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We investigate the wetting condition for diffuse-interface methods in the simulation of two-fluid flows with
moving contact lines. A current method, which uses a surface-energy approach, is shown not to result in a slope
of the interface that is consistent with the prescribed value of the contact angle. A geometric formulation is
proposed that does result in the prescribed contact angle. Test results are presented for the axisymmetric droplet
spreading due to the capillary force and the motion of a droplet on a solid substrate in a shear flow.
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I. INTRODUCTION

Moving contact line problems are ubiquitous in
nature—in everyday application and in industry—ranging
from coating processes, the removal of oil from adhering
surfaces in detergency applications, to water droplets rolling
down leaves or window panes; wherever one fluid displaces
another on a solid surface. Analysis of these problems en-
counters difficulties that arise from a stress singularity at a
moving contact line, which results when the Navier-Stokes
equations are subjected to a no-slip boundary condition at the
contact line. Several explanations for the motion of contact
lines have been proposed, including slip �1,2�, a precursor
layer �3�, surface-tension relaxation �4�, condensation
�evaporation� �5�, and a diffuse-interface formulation �6,7�.
We consider the latter method in this paper.

Previous work on flows with moving contact lines pre-
dominantly uses a slip formulation, and we shall make some
reference to an effective slip length in this paper, so we very
briefly discuss that approach first. In that approach, the no-
slip condition is replaced by a Navier slip condition, thereby
introducing a “slip length” �1,2�:

v = �n · �v at the wall, �1�

where v denotes the velocity component of fluid parallel to
the solid substrate, n denotes the normal vector of the solid
substrate, pointing into the fluid, and � is the slip length.
Amongst previous work on numerical simulations in which
an approximation of the condition �1� is adopted, Schleizer
and Bonnecaze �8� simulated the motion of a two-
dimensional droplet in a lid-driven channel flow using the
boundary element method. In our previous work, we pre-
sented a level-set approach for simulating flows with a mov-
ing contact line with hysteresis �9�, and applied this method
to two-dimensional droplet deformation or motion in a chan-
nel at moderate Reynolds numbers �10�. Related simulations
were conducted by Zhang et al. �11� and Smith et al. �12�. In
other related work, the effective slip length arising from dis-
cretization errors is exploited to allow contact lines to move
�13–15�.

We consider here the use of a diffuse-interface method for
the simulation of these flows. This method has become very
popular in recent years �7,16–21�. In this method, an order
parameter �here the volume fraction of one of the fluids,
denoted here by C� varies relatively smoothly in an interfa-

cial region of finite thickness. It is known that considering a
diffuse interface rather than a sharp interface around the con-
tact line results effectively in slip, through the diffusive
fluxes between the bulk fluids �22�. Hence the stress singu-
larity at moving contact lines is removed even when a no-
slip velocity boundary condition is imposed, when using a
diffuse-interface method.

In order to evaluate the usefulness of this approach, and to
ensure that the correct macroscopic behavior of contact line
motion is obtained, there are two important issues that
should be addressed. One is to relate the results to previous
work, e.g., through a quantification of the effective slip
length in the diffuse interface model, and the other is the
appropriate formulation of the wetting condition. Jacqmin
�7� and the present authors �23� have addressed the first issue
in previous work. Jacqmin showed that the effective slip
length �di is related to the dynamic viscosity � and a specific
parameter of the diffuse-interface model, the so-called mo-
bility M �see Sec. II A below� by �di���M, when it is
assumed that � /��M→0, where � is the characteristic
length scale of diffuse interface. In previous work, we have
conducted a quantitative evaluation of the effective slip
length for cases where � /��M �O�1� through a numerical
study �23�, in which the numerical results of axisymmetric
spreading of the droplet were compared with a lubrication
theory and with results from a level-set method. The effec-
tive slip length �di was found to be approximately propor-
tional to the characteristic length scale of the interface think-
ness �, i.e., �di=��, where � is a constant ��=1.8±0.2�.

The main subject of the present paper is the second out-
standing issue mentioned above, i.e., the appropriate wetting
condition at the contact line for diffuse-interface methods. A
so-called surface-energy formulation is generally used in the
literature so far �7,16,17,19–21�. In this surface-energy for-
mulation, the wetting condition is expressed in terms of the
microscale contact angle �s, which can be determined by
Young’s equation in terms of constant surface tensions at the
three material boundaries between the three phases; for ex-
ample, for a gas/liquid/solid contact line,

cos �s =
�gs − �ls

�lg
, �2�

where � is the surface tension, and the subscripts gs, ls, and
lg denote the surface tension of gas-solid, liquid-solid and
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liquid-gas material boundaries, respectively. In order to es-
tablish a relationship between the microscale contact angle
and the boundary condition for the order parameter, Jacqmin
�7� suggested using a surface-energy density model g�C� at
the solid substrate. Thereby the wall surface energy is Fw
=��g�C�dA, where � depends on the prescribed microscale
contact angle. If the interface is in equilibrium at the solid
wall, a natural boundary condition for the order parameter C
can then be obtained.

�n · �C = ���s�g��C� �3�

Similar surface-energy formulations were also proposed by
Papatzacos �19� and Briant et al. �16�. Their formulations are
directly derived from Young’s equation �2�, in which the sur-
face tension is computed from the excessive free energy at
the interface region. The computation of liquid-gas surface
tension is straightforward when the equilibrium C profile
across the interface is known. However, this is not the case
for the liquid-solid and gas-solid interfaces. As a result, the
liquid-solid and gas-solid surface tensions are evaluated us-
ing a linear approximation of the surface-energy density
model in the normal direction of the solid wall. Finally, only
an approximation of the relation between � and the micro-
scale contact angle �s is provided. Papatzacos �19� showed
that �= 2

3 cos �s, and Khatavkar et al. �20� used �= 3
4 cos �s.

In Sec. II B below we present evidence that the application
of a surface-energy formulation does not lead to a distribu-
tion of C that would be consistent with the microscale con-
tact angle in droplet spreading. Also, a substantial difference
with results from a sharp interface are observed.

In this paper we consider a droplet attached to a smooth
and chemically homogeneous solid substrate such that the
microcontact angle is distributed universally around the con-
tact line. Then, we propose an alternative formulation of the
wetting condition for diffuse interface simulations. This is
derived strictly from the geometry of the interface in the
vicinity of the contact line. We first show that the geometric
formulation is equivalent to the surface-energy formulation
in the computation of the contact angle when given a C
distribution around a contact line. We then present evidence
showing the advantages of the geometric formulation over
surface-energy formulations when a contact angle is pre-
scribed. Results from numerical validation tests are pre-
sented, including the axisymmetric droplet spreading and
three-dimensional �3D� droplet displacement in a shear flow,
elucidating the significance of the geometric wetting condi-
tion on the motion of the contact line.

II. MATHEMATICAL FORMULATION

A. Diffuse interface method

We consider here two incompressible immiscible fluids
and assume that the density 	 and the viscosity � is constant
in each bulk fluid. The two fluids are separated by a diffuse
interface that is of finite thickness, due to the mutual diffu-
sion of the fluids. Hence the transition of physical parameters
such as density, viscosity, and pressure is smooth across the
interface. We define here the volume fraction C of one of the
two fluids as the order parameter, such that

C = �1 in cells occupied by fluid 1,

0 in cells occupied by fluid 2.
�4�

The density and viscosity are averaged in terms of C accord-
ing to

	 = C	1 + �1 − C�	2 and � = C�1 + �1 − C��2, �5�

where 	 is the density, � is the dynamic viscosity, and the
subscript distinguishes the two fluids.

The scalar field of C is advected by the incompressible
velocity field u, while being diffused due to spatial inhomo-
geneities of the fluids. The spatiotemporal evolution of C is
modeled by the convective Cahn-Hilliard �CH� equation

�C

�t
+ u · �C = M�2
 , �6�

where M is the mobility and 
 is the chemical potential.
When the velocity field is required to be solenoidal,

� · u = 0, �7�

the CH equation �7� conserves the total volume of each fluid,
and consequently, we ensure mass conservation, even in the
cases where significant density differences are involved �24�.

The velocity field is the solution of the Navier-Stokes
equation, given here in dimensionless form,

	̂	 �u

�t
+ u · �u
 = − �p +

1

Re
� · ��̂��u + �uT�� +

fst

ReCa
,

�8�

where the dimensionless number is defined with respect to
the properties of fluid 1: the Reynolds number is defined as
Re=	1UL /�1, the capillary number as Ca=�1U /�, 	̂=C
+ �1−C�	2 /	1, and �̂=C+ �1−C��2 /�1. U, L, and fst repre-
sent characteristic velocity, length, and the surface tension
scales, respectively.

The profile of C across the diffuse interface is determined
primarily by the free energy model, taken here as the van der
Waals free energy density model in terms of volume fraction
C �following, e.g., �7��,

f =
1

2
�����C�2 + �−1����C� , �9�

where ��C�= 1
4C2�1−C�2 is the bulk free energy density, of

which two minima at C=0 and 1 correspond to the two bulk
free energy densities, respectively; the first term on the right-
hand side is the excess free energy density, and represents a
measure of the local spatial inhomongeneity; � is the coeffi-
cient of surface tension and � is a measure of the interface
thickness. The free energy is given by F=��f dV, where � is
the physical space occupied by two fluids. The chemical po-
tential 
 is defined as the rate of change of free energy with
respect to C,


 =
F

C
= �−1��

��

�C
− ����2C , �10�

where  /C denotes the variational differentiation with re-
spect to C. When the interface is at equilibrium in the ab-
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sence of fluid flow, the diffuse flux vanishes in the interfacial
region. The equilibrium interface profile can then be found
by solving 
�C�=0. The solution for a one-dimensional pro-
file of C at such an equilibrium is

C��� =
1

2
+

1

2
tanh	 �

2�2�

 . �11�

Note that though Eq. �11� is derived for a flat interface at
equilibrium, it can also be used for a curved interface as long
as the thickness of the diffuse interface is much smaller than
the radius of the interfacial curvature.

In equilibrium the surface-tension force can be interpreted
as the integral of the excess free energy per unit surface area
across the interface, which yields for a flat interface

� = ����
−�

+� 	dC

d�

2

d� , �12�

where � denotes the coordinate along the direction normal to
the interface. The value of parameter � follows from these
results as �=6�2. Substituting Eq. �10� into Eq. �6� and set-
ting �=6�2, the dimensionless CH equation becomes

�C

�t
+ u · �C =

1

Pe
�2	Ch

−1��

�C
− Ch�

2C
 , �13�

where the Péclet number Pe= UL2

6�2M�
and the Cahn number

Ch=� /L.
The stress term in the momentum equation arising from

composition gradients can be written as �25�

fst = − C�
 . �14�

By defining p̂= p−
C, this potential form of the surface-
tension force can also be written as

fst = 
�C = 6�2	Ch
−1��

�C
− Ch�

2C
�C . �15�

It is clear that the surface-tension force formulation adopted
here �Eq. �15�� requires less smoothness of the chemical po-
tential than the formulation �14�. The modified pressure p̂
aims to ensure the divergence-free velocity field constraint
during the computation. For simplicity, we shall drop the
caret diacritic.

We have shown previously �24� that nonpenetration of
mass diffuse flow at the solid substrate is necessary for the
volume conservation of each fluid in the contact line prob-
lem, i.e.,

n · �
 = 0, �16�

where n is the unit outward normal defined at the solid sub-
strate. This is one of the boundary conditions for the CH
equation enforced at the solid substrate, and the other one
will be derived from the wetting property of the two fluids.

B. Wetting condition

As discussed in the Introduction, boundary conditions for
the CH equation based on a surface-energy formulation are

currently popular in diffuse-interface methods for moving-
contact-line problems. In this section, we briefly derive this
condition, together with an alternative, using the geometrical
properties of the order parameter C at the contact line. Both
boundary conditions are tested in Sec. IV below.

If the contours of the order parameter in the diffuse inter-
face are approximately parallel to each other, the normal vec-
tor to the interface �denoted by ns� can be written in terms of
the gradient of C as

ns = �C/��C� . �17�

At the contact line, ns intersects the solid substrate at an
angle of � /2−�, where � is the contact angle �see Fig. 1�.
Thus, the contact angle can be computed geometrically in
terms of C by

tan	�

2
− �
 =

− n · �C

��C − �n · �C�n�
. �18�

Equation �18� is herein referred to as a geometric formula-
tion for the computation of the contact angle �. This formu-
lation provides a good approximation of the contact angle �
as long as �a� there are enough grid points �usually 4–8� to
resolve the interface, and �b� the diffuse interface is in equi-
librium or near equilibrium at the solid substrate; in other
words, as long as the interface in the neighborhood of the
contact line is not significantly thinned or thickened during
the computation.

Equation �18� can also be written as

n · �C = − ��C�cos � . �19�

Multiplying both sides of Eq. �17� with ns results in

��C� = ns · �C = �C/�ns. �20�

Upon substituting the equilibrium interfacial profile Eq. �11�,
Eq. �20� becomes, after some manipulations,

��C� =
C�1 − C�

�2�
=

�2��C�
�

. �21�

Substitution of Eq. �21� into Eq. �19� gives

cos � = −
�n · �C
�2��C�

, �22�

which is herein referred to as a surface-energy formulation
for the computation of the microscale contact angle �. We
conclude that the geometric formulation �18� and surface-

Solid wall

θ
n

fluid 1

fluid 2
interface thickness

s

n s

FIG. 1. Diffuse interface interpretation of the contact line and
the contact angle
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energy formulation �22� are equivalent in computing the con-
tact angle � for a given C distribution in the immediate vi-
cinity of a contact line.

The formulations for computing the microscale contact
angle can also be converted into wetting conditions for a
prescribed microscale contact angle �s. For example, the
wetting condition of surface-energy form can be straightfor-
wardly obtained from Eq. �22�.

�n · �C = − �2 cos �s
���C� . �23�

It is easy to show that Eq. �23� is of the same form as the
wetting condition used in �20�, by using the same order pa-
rameter as in that paper. The sole difference between the two
results, is in fact, that the current approach gives

� =
1
�2

cos �s, �24�

whereas the value of the constant coefficient on the right-
hand side obtained by Papatzacos �19� is 0.67, and 0.75 by
Khatavkar et al. �20�. Our result for the surface-energy for-
mulation, which indeed involves a geometrical argument, is
just in-between these results that involved an approximation
at some point. The corresponding wetting condition for the
geometric formulation is

n · �C = − tan	�

2
− �s
��C − �n · �C�n� . �25�

We now investigate whether the two wetting conditions
are also equivalent when a microscale contact angle �s is
prescribed. In order to compare Eq. �25� with the surface-
energy formulation, we write the latter in the form given in
Eq. �19�,

n · �C = − ��C�cos �s. �26�

In order to assess whether the boundary conditions �24�–�26�
ensure that the correct microscale contact angle will be im-
posed, we consider here the case wherein for some kind of
numerical reason initially the value of the contact angle �de-
noted here by �d� may be different from the prescribed mi-
croscale contact angle �s. This is in fact what happens in the
simulations presented in this paper: at each time step, C is
first updated in the volume occupied by both fluids, while the
values at ghost cells are fixed; the latter are updated subse-
quently such as to represent the boundary condition imposed.

It is important to note that in numerical simulations the
wetting condition should ensure that the contact angle � is
equal to the microscale contact angle �s at each time step
only by adjustment of n ·�C �e.g., at ghost cells in the wall�.
The reason for this is that the magnitude of the tangential
component of �C �=t ·�C, where t denotes the direction
parallel to the solid substrate, in the plane defined by n and
ns� cannot be changed. It is therefore essential to express the
right-hand sides of Eqs. �25� and �26� in terms of t ·�C.
The wetting condition following from the present geometri-
cal arguments �25� leads to the following boundary condition
for C:

n · �C = − cos �s�t · �C�/sin �s, �27�

while the surface-energy formulation of the wetting condi-
tion results in

n · �C = − cos �s�t · �C�/sin �d �28�

by substituting ��C � = t ·�C / sin �d into Eq. �26�. We can see
that the microscale contact angle can be reproduced from the
local distribution of C after the implementation of Eq. �27�.
However, this is not the case when using Eq. �28�. In fact,
the boundary condition �28� is comparable to imposing an
effective contact angle �, where min��s ,�d���
�max��s ,�d�, instead of the microscale contact angle. Trac-
ing back the difference between the two conditions, the cause
is seen to be the fact that in Eq. �25� only the tangential
component of �C appears on the right-hand side, whereas all
components of �C are present on the right-hand side of Eq.
�26�. The application of either boundary condition will in
fact change the normal component n ·�C, which will there-
fore affect the right-hand side of the latter, but not the
former.

Hence the use of the surface energy in the numerical
simulations with moving contact lines is expected to lead to
values of the contact angle that differ from the prescribed
value with the exception of �s=� /2, for which both the geo-
metric and surface-energy formulation yield n ·�C=0. We
conclude therefore that it is safer and more efficient to use
the geometric formulation in practical applications. Qian et
al. �26� also noticed the difference between the effective con-
tact angle � and the microscale contact angle �s arising from
the surface-energy formulation. They made an effort to im-
prove the surface-energy formulation by introducing the con-
cept of compensated Young stress, which allows a relaxation
of the resulting dynamic contact angle and thereby makes it
closer to the microscale contact angle than the effective con-
tact angle. Their relaxation scheme alleviates the deviation of
the resulting contact angle from the microscale contact
angle; however, it does not completely resolve it.

III. NUMERICAL METHODS

Numerical discretization is carried out on a staggered grid
with a grid size of h=�x=�y. On the staggered grid, the
scalar flow variables such as pressure and volume fraction
are defined at the center of each cell, and the velocity com-
ponents at the corresponding cell faces. The Adams-
Bashforth scheme and Crank-Nicolson schemes are em-
ployed in the discretization of the Navier-Stokes �NS� and
CH equations, which involves three time steps: n−1, n, and
n+1. All the dependent variables everywhere in the domain
are supposed to be known only at time steps n−1 and n. To
advance the dependent variables to time step n+1, three
�sub-�steps are performed:

�a� Update the volume fraction field by solving the CH
Eq. �6� with the velocity and C field at time steps n−1 and n;

�b� Compute the local surface-tension force in the interfa-
cial region at time step n+1/2 using the volume fraction
field at time steps n and n+1;

�c� Update the velocity field to time step n+1 by solving
the NS Eqs. �7� and �8�. Details of the solutions of CH and

HANG DING AND PETER D. M. SPELT PHYSICAL REVIEW E 75, 046708 �2007�

046708-4



NS equations can be found in �24�. Here, we mainly focus on
the implementation of the geometric formulation of the wet-
ting condition.

The wetting condition provides a natural boundary condi-
tion for the solution of the CH equation. Since the volume
fraction C is defined at cell centers, one layer of ghost cells is
used to enforce the boundary conditions. Hence the imple-
mentation of the wetting condition corresponds to the deter-
mination of the value of C at the center of the ghost cells. In
the following, we shall explore the details of how to impose
the two wetting conditions on a staggered grid. We consider
here the cell centers �i ,1� adjacent to the solid substrate,
where the first index i denotes the coordinate tangential to
the solid substrate and the second index denotes the coordi-
nate normal to the solid substrate. If 0.001�Ci,1�0.999, the
cell centers �i ,1� are considered to be located in the contact
line region. Applying a central finite difference scheme to
discretize the derivatives on both sides of the wetting condi-
tion �27� at the cell center �i ,1�, we can obtain an approxi-
mation of Ci,0 from the C values at its neighboring cell cen-
ters,

Ci,0 = Ci,2 + tan	�

2
− �s
�Ci+1,1 − Ci−1,1� . �29�

This equation serves as the discretized wetting condition for
a prescribed microscale contact angle �s. Note that all C
values on the right-hand side of Eq. �29� are supposed to
have already been updated to time step n+1, and can there-
fore be used to extrapolate Ci,0

n+1.
The no-penetration of the diffuse flux provides a further

boundary condition for the CH equation, i.e., Eq. �16�. It is
used to determine the chemical potential at the ghost-cell
center �i ,0� by 
�i ,0�=
�i ,1�. This condition is very helpful
in keeping the total mass conserved �24�.

IV. RESULTS AND DISCUSSION

A. Capillary spreading

The first test case considered here is the axisymmetric
spreading of a droplet on a solid substrate, in which a capil-
lary force drives the flow and the motion of the contact line.
This flow is analyzed in detail in Ref. �23�; we focus here on
the implementation of the wetting condition. The features of
the dynamical behavior of droplet spreading are observed on
a inertial-capillary time scale T=�	a0

3 /� �27�, where a0 is
the initial radius of the droplet. The results are presented for
fixed values of the Ohnesorge number

Oh = �Ca/Re =
�

�	�a0

. �30�

In the following simulations, we use a grid of 401�161 for
a domain of 2�0.8, and set Oh=0.0354 and the Cahn num-
ber Ch=� /a0=0.005, which results in an effective slip length
of about 0.01a0. The simulation starts from an initial contact
angle of � /3 and the microscale contact angle is set to � /18.

The spreading process at the initial stage can be observed
in Fig. 2, where sequences of drop shapes are shown in terms

of the volume fraction countour C=0.5. In particular, the
drop shape at t=0.226 using the geometric formulation is
shown in Fig. 3 in terms of the volume fraction counters
ranging from C=0.1 to 0.9. Because either the straining fluid
flow or the wetting condition could possibly thin or thicken
the interface near the contact line, it is a concern whether the
volume fraction profile near the contact line is well main-
tained at its equilibrium state. In the present simulations we
use a semiimplicit method for the convective Cahn-Hilliard
equation and the wetting condition is enforced in an iterative
way. Thus, these thinning �thickening� effects will be delib-
erately balanced by the diffusive flux at each time step to
keep the profile of the interface near the contact line at equi-
librium, even for moving contact lines. In Fig. 3 we can see
that at that moment the interfacial profiles around the contact
line are indeed at equilibrium or very close to their equilib-
rium state.

Several observations can be made from the results of the
geometric formulation and surface-energy formulation. First,
the surface-energy formulation results, at any given time, in
a larger value of the dynamic contact angle than the geomet-
ric formulation �see Fig. 2�. Figure 4 shows the difference
between the microcontact angle and the effective contact
angle obtained by the surface-energy formulation, as a func-
tion of time in a semilogarithmic plot. It is seen that the
effective contact angle gradually relaxes to the microscale

r

z

0 0.5 1
0

0.3

FIG. 2. Snapshots of droplet interface shapes at times t=0,
0.113, 0.226, 0.452, 0.679. The thick solid line represents the initial
droplet interface �t=0�, the solid lines are from the geometric for-
mulation, and the dashed lines are from the surface-energy
formulation.

r

z

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.05

0.1

0.15

FIG. 3. Drop shape around the contact line at time t=0.226 in
terms of contours ranging from C=0.1 to 0.9. The results are ob-
tained using the geometric formulation.
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contact angle. Inertial effects account for the nonmonotone-
ous relaxation of the effective contact angle at the early stage
of spreading �23�. At the late stage the effective contact angle
converges exponentially to the microcontact angle. Secondly,
it is found that the spreading process using the surface-
energy formulation is relatively slower than when the geo-
metric formulation is used. These two observations agree
with our analysis in Sec. II B, i.e., surface-energy formula-
tion generally enforces an intermediate contact angle value
��min��s ,�d����max��s ,�d��. It is due to this fact that the
spreading process is considerably delayed when using the
surface-energy formulation.

For comparison we have also obtained results from a
level-set method simulation �9�, which uses a slip condition
�1�. We reproduce from �23� a comparison in Fig. 5 between
results obtained from a level-set method �for a fitted slip
length of 0.01a0� and the current diffuse-interface method.
Here the maximum angle between the interface and the hori-
zontal in a small region around the contact line �indicative of
an apparent contact angle� is plotted as a function of the
instantaneous capillary number Cacl=�Ucl /�. The results
obtained by the level-set method agree very well with those
of the diffuse-interface method using the geometric formula-
tion for this fitted “effective” slip length for Cacl�0.02. A
possible explanation for the differences at larger values of
Cacl is that at that stage of the simulations �i.e., directly after
t=0�, the radius of curvature is too small to expect good
agreement between the two methods. It is seen that the
surface-energy formulation leads to a solution that is sub-
stantially different from the level-set method at this slip
length �it is only in the limit of Cacl→0, i.e., the steady state
of the droplet, that all the results appear to converge�. Given
the strong time dependence of the contact angle in this simu-
lation �cf. Fig. 4�, which evidently affects the results in Fig.
5, we have not attempted to conduct a simulation using a
level-set simulation with a fitted slip-length �also, the slip
length value required would be excessively small�.

B. Sliding motion of a drop in shear flows

In this section we present a study of the effects of wetting
conditions on fully 3D flows by simulating the sliding mo-
tion of a drop in shear flow in a channel. The microscale
contact angle is prescribed as �s=� /3. The computational
domain is of size 15Hd�9Hd�3Hd, where Hd is the initial
height of the drop. Initially, the radius of the contact line of
the drop is �3Hd, and the drop rests at x=4.5Hd. The upper
boundary of the channel moves at a constant velocity, to
produce a shear flow of shear rate �̇=1/3 in the channel. The
droplet-to-outer-fluid density and viscosity ratios are 	1 /	2
=10 and �1 /�2=10, respectively. We use Hd as the charac-

(a)

(b)

FIG. 6. Three-dimensional views of the moving drop for �s

=60, Re=8.89 and using the geometric wetting condition. �a� Ca
=0.5, �b� 2.5.
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FIG. 4. Difference between the contact microscale contact angle
and the effective contact angle obtained using surface-energy for-
mulation as a function of time.
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FIG. 5. Maximum apparent contact angle as a function of the
capillary number. The dashed-dotted, dashed, and solid lines indi-
cate the results from the level-set method, the surface-energy for-
mulation, and the geometric formulation of the diffuse-interface
method, respectively. Dashed-dotted and solid lines are from
Ref. �23�.
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teristic length and the inverse of the shear rate 1 / �̇ as the
characteristic time. A Reynolds and capillary number is de-
fined as Re=	1�̇Hd

2 /�1 and Ca=�1�̇Hd /�, respectively. The
simulations are carried out on a grid of 251�151�51 with
a grid size h=0.06Hd. In all cases, the Cahn number is set to
Ch=� /Hd=0.03, which yields an estimated slip length of
about 0.054Hd�0.06Hd �23�. The Reynolds number Re
=8.89 and the initial contact angle is set to � /3, which
equals the microscale contact angle.

Two test cases of respective capillary numbers Ca=0.5
and 2.5 have been investigated. The 3D views of the moving
droplet using the geometric formulation are shown in Fig. 6.
Generally, the differences in the motion of the contact line
using geometric and surface-energy formulation are rela-
tively modest in the test case of the small capillary number,
where the surface tension is the dominant force. Snapshots of
contact lines in dimensionless time intervals of 30 are shown
in Fig. 7. We see that the results from the two wetting con-
ditions generally appear to agree well at Ca=0.5; only subtle
differences in the shape of contact lines are observed around
the front and rear of the contact line. Comparatively signifi-
cant differences occur in the test case of Ca=2.5 and they
become more pronounced as the droplet undergoes consider-
able continuous deformation. The reason for this difference
lies primarily in the effective contact angle implemented in
the surface-energy formulation. The contact-angle distribu-
tion along the contact line is shown in Fig. 8, where s de-
notes the coordinate along the contact line and Scl denotes
the circumference of the contact line. It shows that the con-
tact angle resulting from calculations wherein the geometric
formulation is used always remains at the prescribed micro-
scale contact angle, i.e., �=� /3, whereas the surface-energy
formulation results in a deviation of the contact angle from
the prescribed value. The magnitude of the deviation appears
to be dependent on the capillary number, e.g., 2° –3° at Ca
=0.5 and 1° –7° at Ca=2.5. The distribution of the effective
contact angle arising from the surface-energy formulation

does not vary monotonously from the rear to the front of the
contact line. The contact-line speed is also affected by the
formulation of the wetting condition. After the acceleration
at the initial stage, the contact-line speed at the front and rear
of the contact line gradually converges to a constant value;
hence the contact-line motion reaches a steady state. At
steady state, the contact-line speed Ucl at Ca=0.5 is approxi-
mately 0.0240 when using the geometric formulation, and
0.0242 when using the surface-energy formulation. They are
very close as the resulting hysteresis is almost zero �see Fig.
8�. At Ca=2.5 the contact-line speed Ucl is approximately
0.021 when using the geometric formulation, and 0.019
when using the surface-energy formulation. The motion of
the droplet of the latter is therefore slightly hampered in the
latter case, giving the appearance of contact-angle hysteresis.
The effective contact angle cannot be interpreted as a dy-
namic contact angle, however. This is due to the fact that we
do not assume any constitutive relation between the contact
angle and the speed of the contact line in the present simu-
lations, which would account for the roughness or the chemi-
cal inhomogeneity of the solid substrate. Overall, therefore,
the results using the geometric formulation are expected to
be superior over those from the surface-energy approach.

V. CONCLUSION

In this paper we propose a geometric formulation of wet-
ting conditions with respect to the microscale contact angle,
which can be used in the diffuse interface simulation of mov-
ing contact line problems. Compared with the widely used
surface-energy formulation, we show theoretically that the
geometric formulation can successfully enforce a wetting
condition for a constant microscale contact angle that corre-

X4 6 8 10 12

FIG. 7. Snapshots of contact lines of the moving drop �from left
to right� for �s � 60°, Re=8.89 at a time interval of 30: Ca=0.5
�upper figure�, Ca=2.5 �lower figure�. The solid and dashed lines
represent the results when using the geometric and the surface-
energy formulations of the wetting condition, respectively.
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FIG. 8. Contact-angle distribution along the contact line for �s

=60°, Re=8.89. S denotes the coordinate along the contact line
starting at the upstream and Scl denotes the circumference of the
contact line. The solid line represents the results using the geomet-
ric formulation surface-energy formulation. The dashed and dash-
dot-dotted lines represent the results using the surface-energy for-
mulation at Ca=0.5 and 2.5, respectively.
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sponds to a smooth and chemically homogeneous solid sur-
face, while the surface-energy formulation actually would
result in a deviated value. This analysis is supported by the
numerical experiments such as the capillary spreading and
the 3D moving droplet under shear flows. In summary, both
the theoretical analysis and numerical results for capillary
spreading indicate that the geometric formulation is techni-

cally more feasible than the surface-energy formulation in
diffuse-interface simulations.
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